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Adaptive Mesh Refinement Procedure
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The present work is concerned with the development of a procedure for adaptive computa-

tions of shear localization problems. The maximum jump of equivalent strain rates across ele-

ment boundaries is proposed as a simple error indicator based on interpolation errors, and

successfully implemented in the adaptive mesh refinement scheme. The time step is controlled by

using a parameter related to the Lipschitz constant, and state variables in target elements for

refinements are transferred by L,-projection. Consistent tangent moduli with a proper updating

scheme for state variables are used to improve the numerical stability in the formation of shear

bands. It is observed that the present adaptive mesh refinement procedure shows an excellent

performance in the simulation of shear localization problems.
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1. Introduction

When shear localization problems are simu-
lated numerically, one encounters a difficulty of
multi-scale phenomena accompanied by a strong
concentration of the plastic strain in a narrow
band. A very fine mesh or a special technique is
required to treat extremely large strain gradients
across a shear band. Adaptive methods may be a
natural choice for overcoming this difficulty in
that the structure of a shear band is generally un-
known before computations.

Since the full discretization into a fine mesh re-
quires a huge amount of computation time for the
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shear localization problems, adaptive mesh re-
finement techniques have been employed to refine
the mesh where needed. In performing the adap-
tive mesh refinement, a key issue is to determine
a posteriori error in computations, which indica-
tes regions to be refined for improving the accu-
racy in subsequent calculations. Many error indi-
cators based on residual methods (Babuska and
Rheinboldt, 1978), projection methods (Zienkiewicz
and Zhu, 1991) and interpolation error methods
(Demkowicz et al., 1985) have been developed
for linear problems. These error indicators have
been successfully used with equivalency among
them in linear elasticity problems (Zhu, 1997).
Unfortunately, the error indicators developed in
linear problems may give us information far from
true errors in nonlinear problems. Particularly,
error indicators based on the ellipticity may not
apply for localization problems, because the gov-
erning equations almost lose the ellipticity in nu-
merical simulations. Belytschko and Tabbara (1993)
showed that the error indicators based on the re-
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sidual and the stress projection methods do not
present proper errors in localization problems.
Ortiz and Quigley (1991) proposed the error indi-
cator of the velocity variation for the analysis of
shear localization. Batra and Ko (1992) used the
rate of deformation and Khoei and Lewis (2002)
the maximum gradient of displacements. A great
deal of effort is still required to develop an effi-
cient error indicator for shear localization prob-
lems.

In our study, we propose a simple and reliable
error indicator based on interpolation errors.
Since interpolation error methods do not rely on
the type of governing equations, it may be suited
to develop a proper error indicator for localiza-
tion problems. The proposed error indicator is the
maximum jump of equivalent strain rates across
element boundaries, and we use this error indi-
cator as a basis for adaptively refining the mesh.
The state variables in enriched elements are trans-
ferred by Ls-projection, and those in the other ele-
ments are directly inherited from the parent mesh,
which reduces the numerical diffusion. The time
step, which is an important parameter for the nu-
merical stability, is controlled by employing the
concept of the Lipschitz constant. The state vari-
ables are updated by using iterative backward
Euler methods with initial values from forward
gradient methods, and consistent tangent moduli
are implemented in the coupled equations.

2. Governing Equations

The governing equations with the inertia term
neglected are written as

0o _

W_O (1)
dg _ o ( a0 b
pc a’t_ax(x 8x>+Kd'D (2)

where O is the stress, @ is the temperature, D? is
the plastic rate of deformation, o is the density, ¢
is the specific heat, % is the thermal conductivity,
and £k is the fraction of the plastic work converted
into heat energy. We use the constitutive model
described by the additive decomposition of the
strain tensor into elastic and plastic parts :
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o’=L:(D—D? (3)
In the above equation, 67 is the Jaumann stress
rate and the elastic modulus L defined as

L=2,UII+<S—%,U>I®I (4)

where ¢ and J are the shear and the bulk moduli,
respectively, and IT and I denote the unit fourth
and second order tensors, respectively. The plastic
rate of deformations is defined as follows :

pr=/Ien (s)

e=f (s, &, ) (7)

where G, 0’ and & are the effective stress, the

deviatoric stress and the equivalent plastic strain,
respectively.

3. Computational Algorithms

The coupling of displacement and tempera-
ture fields appears in numerical computations for
thermo-viscoplastic material models. Convention-
ally, the coupled equations (1) and (2) are solved
by the staggered algorithm in which the mechan-
ical field variables are fixed during the calcula-
tion of thermal fields and the converse is taken
for the calculation of mechanical fields. This solu-
tion technique may produce numerical instabili-
ties in a highly nonlinear problem. Hence, we si-
multaneously solve the coupled equations with
consistent tangent moduli and with a proper up-
dating scheme for state variables.

Simple Euler forward procedures have a tend-
ency to be easily unstable unless the step size is
very small. One can improve the numerical stabili-
ty by taking semi-implicit types of time integra-
tions like the forward gradient methods (Peirce et
al., 1984). Although the forward gradient schemes
are advantageous in that the consistent tangent
moduli and the implementation are straightfor-
ward, numerical instabilities may be encountered
for a highly nonlinear problem. In general, the
iterative backward Euler methods with a proper
initial guess (Lush et al., 1989) have more stable
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behaviors than the methods mentioned previ-
ously. We choose the iterative backward Euler
methods with the initial guess obtained from the
forward gradient methods for updating state vari-
ables, and develop consistent tangent moduli in
coupled thermo-mechanical problems. It should
be noted that the consistency between the inte-
gration scheme and the tangent moduli is im-
portant to obtain a good convergence rate of the
Newton-Raphson iterations.

4. Adaptive Mesh Refinement

4.1 Error Indicator

The objective of this section is to develop a
proper error indicator for adaptive meshing in
localization problems. Considering the interpola-
tion error methods do not rely on the ellipticity
of the governing equations, we use the errors as-
sociated with the interpolations. It should be not-
ed that the error indicators based on the elliptici-
ty break down in localization problems, because
the governing equations lose or nearly lose the
ellipticity in the development of shear bands.
The error for the finite element solution Au” of
Au has the following bound associated with the
interpolation J[Au of Au.

lAu"—Au|<C|TTu—Aul (8)

where C is a positive constant, and is a
Sobolev norm. Note that Au”* is the displace-
ment increment in a time step. Let “%” indicate
the order of interpolations or the degree of com-
plete polynomials in interpolation functions. We
assume that the solution Awu is smooth in the
sense that AuC H**!, where H*™' denotes the
Sobolev function space of order 2+1. Then the
error found for Au in the domain £ is given

as, see Ciarlet (1978),
ITIAu —Auln<ch* ™| Aulr, 0<m<Fk (9)

where ¢ is a positive constant, /2 represents the

z+1 18 the semi-
k+1 of Hk+1.

This result is related to the ability of resolving

maximum element size, and

norm associated with the norm

the solutions by interpolations of order .. The
bounds on the interpolation error in the Sobolev
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space may be immediately available as an error
indicator for finite element approximations to so-
lutions of localization problems. In our analyses,
we use only linear elements (£=1), and with the
choice of m=1 then be obtained as

ITTAu—Aul < ch|Aul; (10)

We are concerned with interpolation errors in
elements for finding mesh sizes in subsequent com-
putations to improve the accuracy of solutions
with a better mesh. Let the problem domain be
discretized into finite element space 2;, I=1,-,
M. The problem of finding an estimate for the
error |Au”—Aul; is reduced to the problems
of evaluating quantities such as [|[[TAu—Au],q,.
As a consequence, the following interpolation
errors of elements [ are defined by

eo,=hi( [, IAui,,-kAui,jde)”z (11)

where a comma stands for partial differentiation,
and repeated indices imply summation. The in-
terpolation error in the global domain is fur-
nished by 69212:1 eq,. Since the strain increments
have lower order than the displacement incre-
ments in finite elements, the error estimate (11)
may not be directly evaluated in the finite element
domains. Particularly, a special technique is re-
quired to define errors in finite elements. For
instance, Demkowicz et al. (1985) used an extract
formula for accurate estimates of higher deriva-
tives. For the sake of simplicity, we use the equi-
valent strain increment defined by Aé=2Ae;Aes;/3
instead of the gradients of displacement incre-
ments in Eq. (11). The equivalent strain used here
approaches to the equivalent plastic strain as
the plastic strain is dominant in deformations. In
shear localization problems, the integral term in
Eq. (11) is then approximated by

LAui,jkAui,jde%L AELAE rdSQ2 (12)
Applying the Friedrichs inequality to Eq. (12)
yields

/ A& AR dQ< 1 f NI
2, 2, (13)
to fr AERAE wdl"
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where ¢1 and ¢, are positive constants, and [ are
the boundaries of elements [ as shown in Fig. I.
In our study, AZ is replaced by A&” to estimate
interpolation errors of elements, which will give
better results as the mesh size decreases. The first
term in the right-hand side of Eq. (13) vanishes,
because the third order derivatives of A&" be-
come zero in linear elements. Hence, interpolation
errors of elements / are rewritten as

et =l [ IAE,”kAEf‘kd.Q>U2 (14)

Since there is a jump in the derivatives of Ag” on
an interelement boundary, the derivatives of the
equivalent strain increments in the normal direc-
tions on element boundaries will be undefined.
Now, the jump of the equivalent strain increments
across element boundaries may be a measure of
interpolation errors in that the derivatives in Eq.
(14) are directly related to the difference between
the equivalent strain increments of adjacent ele-
ments. As a result, interpolation errors of linear
elements can be evaluated by a simple indicator
such as

eh =h; max;[&"]r, (15)

where & is the equivalent strain rate, [&*]=
|&#*n*+A&" n~|, and n* and n~ are the unit nor-
mal vectors indicated in Fig. 1. If the jump of
strain rates between adjacent elements is large,
the interpolation error (15) is also large due to
high gradients of the strain rates. The present

Fig. 1 Unit normal vectors n™ and n~ on boundaries
I of the finite element domains £; with mesh
sizes Jir
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error indicator implies that the mesh in high gra-
dients of the equivalent strain rate should be re-
fined, which is matched with the general concept
of adaptive mesh refinement strategies. The equi-
valent strain rate itself was used for the error in-
dicator, but its gradients appear to be more prop-
er in that no adaptive refinement is needed for a
region of high strain rate if the region has a uni-
form strain rate. Furthermore, the present error
indicator is relatively inexpensive and convenient
to use in comparison to the procedures using pro-
jection types of error indicators.

4.2 Mesh refinement strategy

It has been generally known that an optimal
mesh may be constructed when the error of each
element has the same value in all elements (Zhu,
1997). In our analyses, we refine some elements
in case the error obtained from Eq.(15) has a
larger value than a permissible error. The target
elements for refinements are selected by

eh
65}5,277ﬁ (16)

where 7 is a value specified by user, and M is
the total number of elements. The final goal of the
mesh refinement is to find an optimal mesh that
provides equi-distributed errors over elements.
We use the linear quadrilateral and the triangular
elements in our finite element calculations. As

~J
1

Fig. 2 Refinements for a target element and neigh-

(c) [ ]

boring elements : (a) the target element is di-
vided into four elements, and the neighboring
elements are processed as shown in (b) and (c)
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shown in Fig. 2, the target elements for refinement
are divided by four successor elements, and the
neighboring elements are also divided into three
quadrilateral elements or three triangular elements
because they cannot be connected solely by four-
noded quadrilaterals. Since linear triangular ele-
ments inside shear bands yield locking due to the
incompressibility of plastic deformations (Belytschko
et al., 1994), we use the triangular elements only
in an elastic unloading region or in a far field
from the band center.

4.3 State variable transfer and time step

control

For history dependent problems, the solution
procedures cannot be re-computed from scratch,
as the mesh is refined through an appropriate error
indicator. Therefore, one of important points in
adaptive mesh refinement procedures is the trans-
fer of state variables such as stresses, strains and
others. Projection types of transfer operators were
explained by Peric et al.(1996), and patch re-
covery types were presented by Zienkiewicz and
Zhu (1992). In general, projection procedures
have been reported to smear localization modes
into outer regions, and patch recovery has a far
more negative effect. One suggestion for limiting
the diffusion of localized deformations into the
non-localized region is the selective projection
procedure. In this method, the state variables in
the target elements for refinements are transferred
by L,-projection wherein all elements are in-
volved. On the other hand, the state variables in
elements with no refinement are directly trans-
ferred from the parent elements. This selective
projection procedure is helpful for preserving the
limit diffusion of localized deformations.

The stiff behaviors of the governing equations
restrict the time step size near the critical time for
the severe localization. In the ordinary differential
equations, the time step in an implicit iteration is
confined by the magnitude of the Lipschitz con-
stant (Aiken, 1985). Numerical solutions of a prob-
lem with a large Lipschitz constant may diverge
rapidly in a relative sense. With the same concept,
a parameter J related to the Lipschitz constant is
defined by

J=max ﬁ—g‘ (17)

A sufficient condition for convergence in the back-
ward Euler method for the ordinary differential
equations is A#J <1 (Aiken, 1985). Hence, the fol-
lowing scheme to restrict the step size in computa-
tions for localization problems is proposed as

{ At= Jrer Atrer, it J > rer

J
At:Atref:

where Aty and [rs are the reference time step

(18)
otherwise

and parameter related to the Lipschitz constant.
A large value of the parameter J due to a rapid
change of the equivalent strain rate leads to a
small time step.

5. Numerical Results

In this section, a number of representative nu-
merical experiments for shear localizations in the
plane strain are presented by using the adaptive
mesh refinement techniques described in the pre-
vious sections. We consider the flow rule used by
Lemonds and Needleman (1986).

L G wl L & \m

Ep:eg[&o(l—a/ﬁ)} <H_?a> (19)
The material properties used in this study are list-
ed in Table 1, and the strain hardening exponent
N is taken to be zero on the same lines of nu-
merical experiments for the simple shear problems
by Kim and Im (1998). The two-fold symmetric
condition is imposed on x1=0 and x>=0 lines for
the model shown in Fig. 3, and the velocity 15 is

Table 1 Material properties

Properties Symbols Values
Density o 7833.0 kg/m?®
Specific heat c 465.0 J/kgK
Thermal conductivity k 54.0 W/mK
Dissipation factor K 1.0
Shear modulus o 2.0X 10" N/m?
Reference shear stress 0o 1.25X10° N/m?
Strain rate sensitivity m 0.01
Reference strain rate & 1.0X1073s7!
Softening coefficient 1L.6X107°K™!




2194

T 1

Y ¥ v v Y Y
v
Fig. 3 Two-dimensional model under the velocity

boundary condition

3m/s after 4=1X107®sec. The symmetric model
width H; and height H> are 1.5 mm X 3.0 mm. We
initially discritize the model into 20 X 10 quadri-
lateral elements. We impose the initial tempera-
ture perturbation such as

2 2\9 xi+xd
g1 Y o)
1
0 (x1,22) = if xi+xf<HE (20

0, otherwise

In our calculations, we take @ to 2°C. The lump-
ed mass is used for the heat capacity term in order
to preserve the stability, and one point integration
for linear elements with a weak hour-glass con-
trol is used in calculations.

We take the value 7 in Eq. (16) to be 1.2, and
the permissible maximum error for refinements
to be 2.0. A small value of 7 tends to broaden
the region of refinements, and a large permissi-
ble error reduces the total number of refinements.
Firstly, we examine the effect of mesh refinements
to the localization behavior by restricting the maxi-
mum number of refinements. The critical time of
the stress collapse shows similar points (see Fig.
4) for different meshes. It does mean that the
mesh refinements do not affect the critical time of
a severe localization. The average stress and the
maximum equivalent plastic strain rate with the
constraint of the maximum number of refinements
are compared for different meshes in Figs. 4 and
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Fig. 4 Average stresses for different meshes. Mark |
indicates the inception points of mesh refine-
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Fig. 5 Maximum equivalent plastic strain rates for
different meshes

5. The inception points of mesh refinements are
marked in Fig. 4. On the contrary to the critical
time of the stress collapse, the evolutions of the
average stress and the maximum equivalent plas-
tic strain rate are shown to be significantly differ-
ent depending upon the level of refinements. More
refined is the mesh, the higher is the stress drop
rate, and the maximum equivalent plastic strain
rate tends to overshoot more severely during the
stress collapse. Consequently, coarse meshes can-
not represent well the process of the stress col-
lapse.

With five steps of mesh refinements, the de-
formed meshes just before refinements are shown
in Fig. 6. Since the errors obtained by the indi-
cator (15) decrease after the refinement by divid-
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(a) (b) (c) (d)
Fig. 6 Deformed meshes: (a) t=5.6X107%, (b) t=
6.53X107%, (c) t=6.67X107%s, (d) t=6.9X
107%

ing the target elements into the successor elements,
a number of time steps in computations are taken
to meet the condition (16) for the next step of
mesh refinement as indicated in Fig. 4. In these
numerical examples, the time step is successfully
controlled by the parameter J related to the Lip-
schitz constant. The time step is considerably de-
creased as the strain rates shoot up and down dur-
ing the stress collapse. In numerical experiments
with a very fine mesh, the excessive distortion of
elements inside shear bands prevents computa-
tions from proceeding to the next steps in the
formation of shear bands accompanied with a
strong drop of the stress. The temperature and the
equivalent plastic strain rate are shown in Figs. 7
and 8, in which the temperature at the final con-
figuration is more spread than the equivalent
plastic strain rate. It is apparent from these figures
that the shear band defined from the equivalent
plastic strain rate is abruptly narrowed during the
stress collapse. Consequently, a very fine mesh is
required to represent such a narrow band after the
critical time. In the present adaptive computa-
tions, the oscillatory change of the plastic strain
rates just after the mesh refinement is observed,
which may be originated from errors in the state
variable transfer. However, the oscillatory behav-
ior is decayed out in several time steps after the
mesh refinement.

6. Conclusions

A new adaptive mesh refinement procedure is
proposed for simulating strain localization prob-
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(a) (b)
Fig. 7 Temperature: (a) =5.6X10"%s, (b) =6.53X
1075, (c) t=6.67X107%s, (d) t=6.9X107%s
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Fig. 8 Equivalent plastic strain rates: (a) #=5.6X
107%, (b) t=6.53X107%s, (c) £=6.67X107%,
(d) t=6.9%X107%

lems by using the maximum jump of the equiva-
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lent strain rates across element boundaries. The
proposed error indicator based on interpolation
errors is simple and reliable, and successfully im-
plemented in adaptive computations for localiza-
tion problems. Since interpolation errors do not
rely on the ellipticity of the governing equations,
the proposed error indicator is suitable for loc-
alization problems. In the proposed procedure for
adaptive computations, an adaptive time step con-
trol associated with the Lipschitz constant is de-
veloped. Furthermore, a proper transfer of state
variables is implemented, and the consistent tan-
gent moduli with a proper updating scheme for
state variables are formulated to improve the nu-
merical stability in the formation of shear bands.
The numerical examples show that the present
adaptive mesh refinement procedure is very useful
enough to detect regions with large gradients of
the strain rate.
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